M.Sc. Botany

Programme Outcomes of M.Sc.

- > Acquire interdisciplinary knowledge and the skill of designing and conducting
- > experiments independently in collaboration and interpreting scientific data.
- > Communicate effectively, analyze critically and learn to adapt to the socio
- \succ technological changes.
- > Face competitive examinations that offer challenging and rewarding careers in science
- \succ and education.
- Identify, formulate and critically analyze various scientific problems and design/develop solutions by applying the knowledge to different domains.

PSOs	Upon completion students of M.Sc. Botany the graduates will be able to :
PSO - 1	Explicate the role of microbes – friend and foe
PSO - 2	Apply fundamental mathematical tools and physical principles in analysing biological situations
PSO - 3	Evaluate ecological interconnectedness of life on earth
PSO - 4	Integrate theoretical and practical knowledge to develop new drugs
PSO - 5	Experience in seeking external funds for their research from a diversity of resources

Programme Specific Outcomes

Semester	:	III	Major Core VII
Name of the Course	:	Taxonomy of Angiosperms and Econ	omic Botany

Subject code : PB1731

Number of hours per week	Number of credits	Total number of hours	Marks	
6	4	90	100	

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	Differentiate between natural and artificial system of classification	PSO – 2,	U
		PSO - 3	
CO- 2	Apply sketches to identify the flora	PSO -2	Ар
CO- 3	Collect and prepare herbaria for future use	PSO - 2	С
CO -4	Record the rules and regulations framed by ICBN	PSO - 2	R
CO- 5	Interpreting biological knowledge in comparing and ranking plants	PSO - 2,	An
		PSO - 3	
CO -6	Evaluation of plants by using dichotomous keys	PSO – 2	Е

Teaching Plan

Total contact hours: 60

Unit	Module	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	outcome		Evaluation
I CLASSI	FICATION					
	1 .	Aim and scope of plant	3	To categorize	Lecture,	Short test,
	1	axonomy – Systems of		the	PPT	Group
		angiosperm classification;		classification of		discussions,
]	Linnaeus, Bentham and		plant taxonomy		Question –
]	Hooker and Engler and				Answer
]	Prantle, Merits and				session,
		demerits of these				Formative
		classification				Assessment I.
	2 7	Taxonomic literatures –	3	To be aware of	Lecture,	

		floras, revisions, manuals,		taxonomic		
		monographs and check lists		literatures	Models	
	3	Identification and	3	To be able to	Lecture,	
	5	preparation of intended	5	identify and	Models	
		keys and bracketed keys		prepare keys	Widdens	
	4	Herbarium techniques	3	To know the	Lecture,	
	4	(Seminar) – Types and	5	different	Charts	
		(Seminar) – Types and functions of herbarium;		herbarium	Charts	
		,				
II NOMENO	TATI	Digital Herbarium		techniques		
II NOMENC	1	Botanical nomenclature –	4	To understand	Lecture	Short test
	1		4	the role and	Lecture	Short test,
		ICN, Principles and Role of				Assignment to
		ICN, Rules – principle of		principle of		learn the
		priority, rejection of names,		ICN		molecular
		limitations in the principle				markers
		of priority, typification,				
		author citation, effective				
		and valid publications				
	2	Numerical taxonomy –	4	To be able to	Lecture,	
		principles, character		evaluate the	PPT	
		coding, measurement of		importance of		
		resemblance-cluster		Numerical		
		analysis, current trends in		taxonomy		
		biosystematics				
	3	Cladistics – phylogenetic	4	To assess the	Lecture,	
		approach of classification,		approaches of	Models	
		species concept		Cladistics		
	4	Molecular markers as	4	To critically	Lecture,	
		taxonomic tools – RAPD,		analyze plants	Video	
		RFLP, AFLP, ISSR		with molecular	clippings	
		(Seminar)		tools		
III FAMILY	DESC	RIPTION				
	1	Objectives and importance	3	To diagnose the		Quiz, Dissect
		of systematic botany;		features of		and Display,
		Systematic position, salient		different		Class test,
		features, distribution,		families		Formative
		description and economic				Assessment II.
		importance of				
		Capparidaceae,				
		Polygalaceae				
	2	Caryophyllaceae, Tiliaceae	3	To diagnose the	Lecture,	
				features of	PPT,	
				different	Field visit	
				families		
	3	Zygophyllaceae (Seminar)	2	To diagnose the	Lecture,	
				features of the	PPT,	
				family	Field visit	
IV FAMILV	DESC	RIPTION		•		
			-	TE 1	T (O D V
	1	Systematic position, salient	3	To diagnose the	Lecture, PPT,	Quiz, Dissect and Display,

		description and economic importance of Rhamnaceae, Sapindaceae		different families	Field visit	Class test
	2	Passifloraceae, Sapotaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
	3	Oleaceae, (Seminar) Boraginaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
	4	Scrophulariaceae, Bignoniaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
V FAMILY	DESCR	RIPTION				
	1	Systematic position, salient features, distribution, description and economic importance of Verbenaceae, Nyctaginaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	Quiz, Dissect and Display, Class test, Formative Assessment III.
	2	Aristalochiaceae, Casuarinaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
	3	Orchidaceae, Commelinaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
	4	Araceae, Cyperaceae	3	To diagnose the features of different families	Lecture, PPT , Field visit	
Course Instru	uctor: M	s. N. Benit		HOD: Dr. C. Je	spin Ida	

: III Semester

Major Core VIII

Name of the Course : **Genetics and Molecular Biology**

:

Subject code

PB1732

Number of hours per week	Number of credits	Total number of hours	Marks
6	4	90	100

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	Understand the organization of cell organelles and genes	PSO – 2	U
CO- 2	Differentiate between mitochondrial DNA and chloroplast DNA	PSO - 2	U
CO- 3	Evaluate the dissociation and re-association kinetics of DNA	PSO - 2	An
CO -4	Construct different types of plasmids	PSO – 2, PSO – 3	С
CO- 5	Identify various types of operons	PSO -2, PSO - 3	R
CO -6	Analyze Transcription and Translation of Prokaryotes and Eukaryotes	PSO – 2, PSO - 5	An
CO - 7	Evaluate the problems in genetics	PSO-2	Е

Teaching Plan

Unit	Mod	ule	Topics	Lectur		Learning	Pedagogy	Assessment/
						outcome		Evaluation
I GEI	NETIC	S						
	1		ntribution of Johann Gregor endel, T.H. Morgan, Karl	3		o differentiate onohybrid and	Lecture, Problem	Formative Assessment I,
		Laı	ndsteiner; Mendel's law of		di	hybrid crosses	based	Discussion.
			edity – Monohybrid and nybrid cross (Seminar)			nd solve the roblems	learning	
	2	epi epi rec	ne interaction – Dominant stasis (12: 3:1), Recessive stasis (9:3:4), Duplicate essive genes (9:7), Duplicate ninant genes (15:1)	3	pı	ble to solve the roblems in gene iteraction	Lecture, Problem based learning	
	3	the	a determination in plants - ories of sex determination; a linked characters (Seminar)	3	th	o distinguish le sex linked haracters	Lecture, PPT	
	4		tation – Types of mutation, tection of mutation	2	di	o assess the ifferent utations	Lecture, PPT	
II DN	IA AN	DG	ENETIC DISEASES	•			•	
	1	W D	NA- types (A, B, C & Z), atson and Crick model of NA, viral DNA, bacterial NA	3	th	o differentiate le different pes of DNA	Lecture, Charts	Diagrammatic representation, Short test.
	2		itochondrial (Seminar) and hloroplast DNA	2	M ar	o distinguish litochondrial nd Chloroplast NA	Lecture, Models	

Total contact hours: 60

	3	Dissociation and re-association kinetics of DNA; cot value and its significance	3	To evaluate the dissociation and re-association kinetics of DNA	Lecture	
	4	DNA replication of prokaryotes and eukaryotes	2	To understand the replication process	Lecture, Video clippings	
	5	Genetic diseases – Sickle cell anemia, Cystic fibrosis, Duchennes muscular dystrophy	3	To identify and critically analyse genetic diseases	Lecture, Video clippings	
III G	ENETI	C ENGINEERING				
	1	Damage and DNA repair mechanism – photo reactivation – excision repair - mismatch repair	3	To understand the repair mechanisms	Lecture, PPT	Short test, Question – Answer session,
	2	Genetic recombination - generalised and site specific; Lysogenic and lytic cycle; Bacterial Transformation,Transduction and Conjugation	3	To analyse the recombination patterns	Lecture, Models	Group discussion, Formative assessment II.
	3	Cloning vectors- plasmids, cosmids, phages, plasmids – characters of plasmids, types, copy number	3	To understand the basics of cloning vector	Lecture, PPT	
	4	pBR322(Seminar), pUC9, MI3, BAC,YAC, shuttle vectors, advantages of cloning vectors	3	To differentiate the different types of cloning vectors	Lecture, Charts	
IV TO	OOLS	IN GENETICS			1	
	1	RNA – types; Transcription - Initiation, elongation, termination, post transcriptional events	3	To differentiate the types of RNA	Lecture	Quiz, Group discussions
	2	Genetic code, Wobble hypothesis; Translation – steps in translation	3	To understand the process of Translation	Lecture, PPT	
	3	Molecular tools for studying genes – Autoradiograhy (Seminar)	3	To acquire skills to operate molecular tools	Lecture, Operating the instruments	
	4	Liquid Scintillation counting, Phosphorimaging	3	To acquire skills to operate molecular tools	Lecture, PPT	
V GE	NOMI	CS				

	1	Fine structure of the gene; Transposons – Tn3, Tn5	3	To differentiate the types of transposons	Lecture, PPT	Multiple Choice Questions, Group discussions, Formative
	2	Operon concept – lac operon, trp operon, Steps in gene cloning; Pros and Cons in gene cloning	3	To understand the concepts of operon	Lecture, PPT	assessment III.
	3	Construction of genomic library; Construction of cDNA library	3	To construct the gene libraries	Lecture, Video clippings	
	4	Gene silencing; Human Genome Project (Seminar)	3	To evaluate the human genome project	Lecture, Video clippings	
Cours	e Instructo	r: Ms. J.Albino Wins	Н	OD: Dr. C. Jespi	n Ida	

Elective III (a)

Semester : III

Name of the Course : Forestry

Subject code :

Number of hours per week	Number of credits	Total number of hours	Marks
6	5	90	100

PB1733

Course Outcomes

CO No:	Upon completion of this course the students will be able to:	PSO Address	CL
CO-1	Categorize the types of forests in Tamilnadu	PSO – 3	An
CO-2	Identify the reasons for degradation of forest	PSO - 3	R
CO-3	Summarize the methods in managing and conserving the forest	PSO - 2, PSO - 3	AP
CO-4	Understand the objectives, advantages and disadvantages of agroforestry	PSO – 3	U
CO-5	Determine the role of botanical gardens, zoos, national parks, and sanctuaries	PSO - 3, PSO - 5	U
CO-6	Evaluate the utilization of forest	PSO - 3	Е

Teaching Plan

Unit	Modul	e Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
I TYPES O	FFORI	EST	•		•	
	1	Forest – definition, role of forest; forest as a balanced ecosystem	3	To understand the role of forest	Lecture	Short test, Quiz, Formative assessment I.
	2	Types and distribution of (Champion and Seth's classification)	3	To categorize the types of forests	Lecture, PPT	
	3	Forest types in Tamilnadu (Seminar)– evergreen forest, deciduous and scrub jungle	3	To categorize the types of forests in Tamilnadu	Lecture, PPT	
II FOREST				T	1 _	1
	1	Forest management and conservation	3	Able to understand the conservation strategies	Lecture	Assignment on forest mensuration
	2	Regeneration; tending operations; sustainable utilization of forest resources – forest organizations	4	To assess the utilization of forest resources	Lecture	
	3	Forest mensuration and remote sensing	3	To know the concept of remote sensing	Lecture, PPT	
	4	methods of measuring diameter, girth, height, and volume of trees	3	Differentiate the different methods of forest mensuration	Lecture, Video clippings	
	5	Geographic information systems for management (GIS) (Seminar)	3	To understand the concepts of GIS	Lecture	
III FORES	T UTIL	IZATION				
	1	Forest utilization – harvesting, conservation, storage and disposal of wood in forest; major and minor forest products	3	To evaluate the utilization of forest	Lecture, PPT	Short test, Quiz, Formative assessment II.
	2	Forest based	3	To assess the	Lecture,	

Total contact hours: 60

ions
ions
roup
ions,
ve
nent
1

Course Instructor: Ms. L.Dyona